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Outline of talk

• Context and Characterization

• Propagation

• Application
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Uncertainty is …

• Aleatory (irreducible) uncertainty is probabilistic variability.
– Increasing knowledge will not eliminate variability
– Think of drawing balls from an urn
– Random variables represent variability

• Epistemic (reducible) uncertainty is lack of knowledge.
– (Subjective) probability can represent epistemic 

uncertainty
– Increasing knowledge does reduce subjective 

uncertainty
– Think of uncertainty about numerical error
– GIF (Generalized Information Theory – fuzzy sets; 

evidence theory; possibility theory) can also represent 
epistemic uncertainty. (Won’t discuss here.)
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Comments

• I’m not going to worry about Bayesian versus 
frequensic probability interpretations here. We 
feel comfortable with both, depending on how 
and when they are used.

• It is important to emphasize that probability 
distribution functions (pdf’s) based on poor data 
have subjective uncertainty.
– This means that we should worry a lot about the 

uncertainty underlying frequensic characterizations 
of pdf’s when we propagate uncertainty.
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“The Probability of Frequency”

Example of accounting for uncertainty in the 
probability distributions:

The requirement may be the most 
uncertain element on this plot.
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Uncertainty in computational 
models arises from myriad sources

• Initial conditions
• Boundary conditions
• Numerical procedures
• Fidelity of physics and associated equations
• Software quality
• Application

A notation I will use is:

Think of this as a system of PDEs, a code, or a model. Here, 
u is the vector of dependent variables, α a vector of 
(possibly) time and space dependent parameters.

( ) [ ] 0=x,tD u,α
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Uncertainty Quantification:

• Uncertainty quantification (UQ) is a foundation for 
predictability.
– To the extent uncertainty is present in calculations, 

we are talking about uncertain prediction.
• UQ emphasizes how we look at the solution of a 

mathematical problem for purposes of applying it.
“Indeed there is a general absence of accepted 
frameworks for quantifying and controlling 
uncertainties from underlying sources of error in 
estimates, computations, and analysis.” (Banks, 
2001)

• UQ aims at Best Estimate Plus Uncertainty
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Probability can be used without 
focusing on UQ: regularization

• For example, we can regularize highly variable (or 
stochastic) equations via an averaging principle, roughly 
like:

• The overbar denotes some kind of “averaging;” “closure”
denotes a renormalization and closure, which may further 
involve asymptotic, rather than convergent, expansions.

• Goal is to eliminate variability, sensitive dependence on 
data, etc in straightforward way by calculating the 
approximation ū.

( ) [ ] ( ) [ ]

( )

0 0

0Closure

= ⇒ =

⎡ ⎤⇒ =⎣ ⎦∼

x,t x,t

x,t

D u,α D u,α

D u,α
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Probability can be used without 
focusing on UQ: regularization cont

• Add a probabilistic interpretation to the 
regularization by assuming that the parameters 
are stochastic. For example, we might seek:

• But the easy way out doesn’t work in general:

[ ] ( )
[ ] ( )

≡

≡

Expectation Exp

Variance Var
1

2

u = F x,t;α

u = F x,t;α

( ) ( ) ( )

( ) ( ) ( )

0

0

⎡ ⎤ ≠⎣ ⎦

⎡ ⎤ ≠⎣ ⎦

Exp Exp

Var Var
x,t

x,t

D u , α

D u , α
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Majda et al is a on-steroids version 
of this kind of regularization.

• They start with a model:

• They introduce a regularization roughly in the 
form (^ is macro, ~ is micro):

with the most singular self-interaction term at the 
small scale regularized with a noise model.

( ) [ ] 0=x,tD u,α

( )

( )

ˆˆ 0

ˆ 0

⎡ ⎤ =⎣ ⎦
⎡ ⎤ =⎣ ⎦

x,t

x,t

D u,α

D u,u,α
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Majda et al :

• This regularization then allows statements like (?)

in the (singular) limit of infinite scale separation.
• Q is some function(al) of the dependent variables 

of interest.
• I claim approximation in the above to emphasize 

that scale separation is never infinite in a real 
application, so application of the result only 
yields an approximation. 

• Uncertainty is not quantified in this work.

( ) ( )ˆ ˆ⎡ ⎤ ⎡ ⎤≈⎣ ⎦ ⎣ ⎦Exp Exp nominalQ u,u Q u,u
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Probability can be used without 
focusing on UQ: ROM

• Chorin has suggested a procedure for defining an 
optimal reduced order model (ROM) under 
specific assumptions about the form of the model 
D. For example:
– D is a Hamiltonian system
– Treat u as an n component random vector
– Project the Hamiltonian to an m<n component 

subset of u via a conditional expectation (with 
respect to the joint pdf of u) in this subset.

– This is called 1st order optimal prediction
– The technical issue is how to actually calculate the 

conditional expectation in specific cases. 
• Uncertainty is not quantified in this work.
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Uncertainty Quantification: 
Characterization

• All UQ starts with identifying and quantifying 
uncertainties underlying the particular model, 
code, calculation one is interested in.

• We call this uncertainty characterization.
• Poorly performed characterization introduces 

further uncertainty (for example, frequensic
distributions can become epistemic 
uncertainties).

• Improving an initial uncertainty characterization 
may result from a forward/backward uncertainty 
analysis (see comment below).
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Uncertainty Quantification: 
Propagation I

The uncertainty is in the parameters.

( ) [ ]

( ) ( )

0,

,

=

⇒

⇒ Exp Var

∼

∼

x,t

α

u

D u,α

α f

u f
u u
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Uncertainty Quantification: 
Propagation I

• For example, BE + U then is:

• Dominant approach is sampling-based:
– Monte Carlo (yuk!)
– LHS and improvements (common but still painful)
– Voronoi tesselation (rocket science?) – of great interest

• Implication is that resulting distribution for the dependent 
variables is an empirical distribution.
– How accurate are the resulting statistics?
– Bad news if the dependent variables end up with multimodal, 

or tail heavy distributions: you’ll likely never see this?
• Because of computational expense this is a BIG PROBLEM.

– Note that introducing ROMs (i.e. less accurate calculations) 
does not necessarily help because of the potential for 
introducing further uncertainty.

– In fact – this is an attractive area for investigation (including 
use of response surfaces) (See Santner, et al, 2003)

• How to get by with sampling remains very important and complex 
problem that occupies most of the community.

( ) ( )±Exp Varu u
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Uncertainty Quantification: 
Propagation II

( ) [ ] 0=x,tD u,α+"dw"
Why not cut to the chase? Let’s just solve SDE’s!

This theoretically maps parameter pdf’s (in a 
HIGHLY RESTRICTED FORM) to dependent 

variable pdf’s.

• First of all – HORRORS!!! even if this thing is 
somehow well defined.

• Second, is it really going to be sensible?
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Uncertainty Quantification: 
Propagation II

• It seems highly unlikely that this object will be 
well defined with all this nasty noise, especially in 
a multi-scale problem.

• For example, simply introduce internal state 
variables for a good laboratory:

( )
[ ]

( )
[ ]

0

0

macro

micro

=

=

x,t

x,t

1 2

2

D u,α ,α

D α
( )

[ ]

( )
[ ]

0

0

macro

micro

=

=

x,t

x,t

1 2

2

D u,α +"dw",α +"dw"

D α +"dw"

• The singularity of the Wiener process and 
complex nonlinearities present above are 
worrisome, let alone calculable.
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Uncertainty Quantification: 
Propagation II

• It is also worth emphasizing that the uncertainty 
characterizations we care about typically don’t 
result in “parameter plus noise.”
– Usually the parameters are assigned standard 

distributions such as uniform, normal, lognormal, 
etc.

• Regarding SDE’s:
“One generally requires very specific types of 
noise (additive, initial data, white noise, etc) to 
obtain a rigorous theory. Stochastic parameters 
(such as rate constants, delays, nonlinearities) not 
in a special class are generally not amenable to a 
theoretical treatment.” (Banks, 2001)
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Uncertainty Quantification: 
Propagation III

• An important area of work that goes well beyond sampling, and 
stops short of dealing with the horrible SDEs, is polynomial chaos 
expansions (and related stochastic finite element methods).

• This is centered on spectral representation of the dependent 
variables and stochastic parameters in appropriate bases, with 
coefficients calculated by a Galerkin procedure from the given 
differential equations.

• Recent work suggests that multiscale structure in the basic 
problem can be reflected in the procedures through appropriate 
bases (such as wavelets). See the work of Najm and colleagues 
(Le Maitre, et al 2004a,b); also Xiu and Karniadakis (2002).

• Going beyond brute force sampling for uncertainty propagation is
of mandatory, in my opinion, so this kind of work is very 
important.

• Tools will need to be developed and deployed for production 
environments (e.g. Sandia engineering) to take full advantage of
this work.

• (There is also ongoing work at Sandia with stochastic finite 
element implementations for structural mechanics by Red-Horse 
and Ghanem.)
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Uncertainty Propagation: 
Backwards

• Propagation of uncertainty, plus comparison with one or 
more benchmarks, allows “improvement” of the model, for 
example through calibration (tuning parameters) or through 
Bayesian updating (to improve the original uncertainty 
characterization).

• An interesting example of this process that represents a 
probabilistic downscaling method is the work of Glimm et al 
(2000, 2001), which roughly does the following:

Prior permeability (micro)
propagation 
comparison with oil production benchmarks (macro) 
Bayesian updating
Posterior permeability (micro)

(Loop)
• These authors also produce a very rich probabilistic prediction (a 

result with statistical confidence intervals).
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Uncertainty Propagation: Caution

• The result of a calibration is sometimes simply 
reported as:

( ) 0⎡ ⎤ =⎣ ⎦optimalx,tD u,α

• This is not in the form of Best Estimate Plus Uncertainty.
• Standard calibration reflects uncertainty in the calibration data and 

assumed uncertainty characterization of the parameters, but NOT in the 
model (D above).

– This is an important limitation and has been under study (see Kennedy 
and O’Hagan, 2001, for an approach incorporating model uncertainty in 
a Bayesian framework). Concern goes back considerably further.

– We call this Calibration Under Uncertainty (CUU).
– It is not clear what it buys us (yet).
– The standard Markov Chain Monte Carlo relied upon for Bayesian 

updating is (hopelessly) impractical for computational physics models.
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Applications – I.e. Decisions

• High risk decisions (economic forecasting, 
finance, climate, reactor safety, waste repository 
performance, chemical facility performance, 
stockpile stewardship, etc) require:

Best Estimate Plus Uncertainty
(Helton, 1994 discusses the surrounding issues.)
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The decision to use the model 
depends on model credibility (V&V)

Partial 
Differential 
Equations

Algorithms

Code

Calculations

Numerical Solution 
Required

Software 
Required

Code Input (including 
mesh) required

Infrastructure 
required

Verification: Mathematically sound? 
Accurate? No bugs?

Validation: Physically accurate? 
Predictive credibility?

Accreditation: Should the code be 
used?

Verification: Mathematically sound? 
Accurate? No bugs?

Validation: Physically accurate? 
Predictive credibility?

Accreditation: Should the code be 
used?

Evaluation: 

Comparison with 
benchmarks

Results applied?
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Uncertainty in Verification

• “Numerical error is an uncertainty.” (Trucano)
• What is the basis for this statement?

– Empirical evidence: Nobody apparently knows or reports 
solution errors (read an issue of Physics of Plasmas, for 
example).

– Software reliability theory (highly unlikely our codes and 
algorithms are bug free) (Singpurwalla and Wilson, 1999)

• What solution error?
Convergence? A Posteriori Error Estimates?

• I’m not the only one who has noticed this:
– “When quantifying uncertainty, one cannot make errors small and then 

neglect them, as is the goal of classical numerical analysis; rather we 
must of necessity study and model these errors.”

– “…most simulations of key problems will continue to be under 
resolved, and consequently useful models of solution errors must be 
applicable in such circumstances.”

– “…an uncertain input parameter will lead not only to an uncertain 
solution but to an uncertain solution error as well.”
B. DeVolder et al. (2001)
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Uncertainty in Validation

• Validation metrics: 
Experimental data have uncertainty and this dominates inferences
drawn from comparing calculations with experiments.

• Maybe you don’t need to validate multiscale simulations:
“The important aspect of nanoscale systems that makes them such 

a TMS challenge is that the characterization of uncertainty will
often have to be done in the absence of experimental data, since
many of the property measurement experiments one would like to 
perform on nanoscale systems are impossible in many cases or 
unlikely to be done in cases where they are possible. Hence, the
concept of self-validating TMS methods arises as a significant 
challenge in nanoscience. By self-validating TMS methods we 
mean that a coarser-grained description (whether it be atomistic 
molecular dynamics or mesoscale modeling, for example) is 
always validated against more detailed calculations (e.g., 
electronic structure calculations in the case of atomistic molecular 
dynamics, and atomistic molecular dynamics in the case of 
mesoscale modeling). (DOE, 2002)
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Maybe you can’t validate multiscale
simulations? 

“Groundwater models cannot be validated”
Title of article by Konikov and Bredehoeft.
(They recommend doing BE+U instead…!)
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Decision to use the calculation:

“Don’t use our software for anything important!”
• Actually, what they really said was -

“We make no warranties, express or implied, that the 
programs contained in this volume are FREE OF ERROR, or 
are consistent with any particular merchantability, or that 
they will meet your requirements for any particular 
application. THEY SHOULD NOT BE RELIED UPON FOR 
SOLVING A PROBLEM WHOSE SOLUTION COULD RESULT 
IN INJURY TO A PERSON OR LOSS OF PROPERTY…”
[Emphasis Mine] (from Numerical Recipes in Fortran, 
Press, Teukolsky, Vetterling, and Flannery)

but I’m hard pressed to see the difference. (Similar 
warnings come along with Sandia codes and everybody 
else's codes for that matter.)

• Who actually uses computational physics software to make 
decisions?
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Needs

• How does a multiscale mathematical formalism imprint sampling 
methodologies for uncertainty propagation? Ditto for chaos 
expansions?

• Advances in sampling and chaos expansions.
– How do we optimally compute? (Gunzburger’s multi-everything 

should be important here. We’re currently only scratching the 
surface of multi-fidelity, multi-physics UQ.)

• Can we really solve complicated, probably singular SDE’s with 
non-classical noise?

• How can a multiscale math/computation framework best 
encompass UQ?

• How do you V&V the calculations? If you can’t what do you do 
next?

• The connection between ROM’s and UQ:
– Uncertainty created by ROM’s
– Selection of ROM’s

• Tools for doing UQ (especially managing the resulting 
information).
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Epilogue – “Scientization”

“…policy makers call for more study to reduce 
uncertainties in an attempt to settle debates. But 
when the research is done, new uncertainties 
frequently emerge, and controversial questions 
are rarely settled…”

John Fleck, ABQ Journal, Sunday, December 12; 
regarding the local debate over the Sandia 
National Labs mixed waste landfill on Kirtland 
AFB.
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